Recently published - More





Abstract

Arcuate nucleus agouti–related peptide (AgRP) neurons play a central role in feeding and are under complex regulation by both homeostatic hormonal and nutrient signals and hypothalamic neuronal pathways. Feeding may also be influenced by environmental cues, sensory inputs, and other behaviors, implying the involvement of higher brain regions. However, whether such pathways modulate feeding through direct synaptic control of AgRP neuron activity is unknown. Here, we show that nociceptin-expressing neurons in the anterior bed nuclei of the stria terminalis (aBNST) make direct GABAergic inputs onto AgRP neurons. We found that activation of these neurons inhibited AgRP neurons and feeding. The activity of these neurons increased upon food availability, and their ablation resulted in obesity. Furthermore, these neurons received afferent inputs from a range of upstream brain regions as well as hypothalamic nuclei. Therefore, aBNST GABAergic nociceptin neurons may act as a gateway to feeding behavior by connecting AgRP neurons to both homeostatic and nonhomeostatic neuronal inputs.

Authors

Mark A. Smith, Agharul I. Choudhury, Justyna A. Glegola, Paulius Viskaitis, Elaine E. Irvine, Pedro Caldas Custodio de Campos Silva, Sanjay Khadayate, Hanns Ulrich Zeilhofer, Dominic J. Withers

×

Abstract

Inherited optic neuropathies include complex phenotypes, mostly driven by mitochondrial dysfunction. We report an optic atrophy spectrum disorder, including retinal macular dystrophy and kidney insufficiency leading to transplantation, associated with mitochondrial DNA (mtDNA) depletion without accumulation of multiple deletions. By whole-exome sequencing, we identified mutations affecting the mitochondrial single-strand binding protein (SSBP1) in 4 families with dominant and 1 with recessive inheritance. We show that SSBP1 mutations in patient-derived fibroblasts variably affect the amount of SSBP1 protein and alter multimer formation, but not the binding to ssDNA. SSBP1 mutations impaired mtDNA, nucleoids, and 7S-DNA amounts as well as mtDNA replication, affecting replisome machinery. The variable mtDNA depletion in cells was reflected in severity of mitochondrial dysfunction, including respiratory efficiency, OXPHOS subunits, and complex amount and assembly. mtDNA depletion and cytochrome c oxidase–negative cells were found ex vivo in biopsies of affected tissues, such as kidney and skeletal muscle. Reduced efficiency of mtDNA replication was also reproduced in vitro, confirming the pathogenic mechanism. Furthermore, ssbp1 suppression in zebrafish induced signs of nephropathy and reduced optic nerve size, the latter phenotype complemented by WT mRNA but not by SSBP1 mutant transcripts. This previously unrecognized disease of mtDNA maintenance implicates SSBP1 mutations as a cause of human pathology.

Authors

Valentina Del Dotto, Farid Ullah, Ivano Di Meo, Pamela Magini, Mirjana Gusic, Alessandra Maresca, Leonardo Caporali, Flavia Palombo, Francesca Tagliavini, Evan Harris Baugh, Bertil Macao, Zsolt Szilagyi, Camille Peron, Margaret A. Gustafson, Kamal Khan, Chiara La Morgia, Piero Barboni, Michele Carbonelli, Maria Lucia Valentino, Rocco Liguori, Vandana Shashi, Jennifer Sullivan, Shashi Nagaraj, Mays El-Dairi, Alessandro Iannaccone, Ioana Cutcutache, Enrico Bertini, Rosalba Carrozzo, Francesco Emma, Francesca Diomedi-Camassei, Claudia Zanna, Martin Armstrong, Matthew Page, Nicholas Stong, Sylvia Boesch, Robert Kopajtich, Saskia Wortmann, Wolfgang Sperl, Erica E. Davis, William C. Copeland, Marco Seri, Maria Falkenberg, Holger Prokisch, Nicholas Katsanis, Valeria Tiranti, Tommaso Pippucci, Valerio Carelli

×

Abstract

Currently, an effective targeted therapy for pancreatitis is lacking. Hereditary pancreatitis (HP) is a heritable, autosomal-dominant disorder with recurrent acute pancreatitis (AP) progressing to chronic pancreatitis (CP) and a markedly increased risk of pancreatic cancer. In 1996, mutations in PRSS1 were linked to the development of HP. Here, we developed a mouse model by inserting a full-length human PRSS1R122H gene, the most commonly mutated gene in human HP, into mice. Expression of PRSS1R122H protein in the pancreas markedly increased stress signaling pathways and exacerbated AP. After the attack of AP, all PRSS1R122H mice had disease progression to CP, with similar histologic features as those observed in human HP. By comparing PRSS1R122H mice with PRSS1WT mice as well as enzymatically inactivated Dead-PRSS1R122H mice, we unraveled that increased trypsin activity is the mechanism for R122H mutation to sensitize mice to the development of pancreatitis. We further discovered that trypsin inhibition, in combination with anticoagulation therapy, synergistically prevented progression to CP in PRSS1R122H mice. These animal models help us better understand the complex nature of this disease and provide powerful tools for developing and testing novel therapeutics for human pancreatitis.

Authors

Fu Gui, Yuebo Zhang, Jianhua Wan, Xianbao Zhan, Yao Yao, Yinghua Li, Ashley N. Haddock, Ji Shi, Jia Guo, Jiaxiang Chen, Xiaohui Zhu, Brandy H. Edenfield, Lu Zhuang, Cheng Hu, Ying Wang, Debabrata Mukhopadhyay, Evette S. Radisky, Lizhi Zhang, Aurelia Lugea, Stephen J. Pandol, Yan Bi, Baoan Ji

×

Abstract

Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells, but has no known function in lung biology. Here, we show that Emp2–/– mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2–/– mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2–/– lungs. Emp2–/– AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.

Authors

Wan-Chi Lin, Kymberly M. Gowdy, Jennifer H. Madenspacher, Rachel L. Zemans, Kazuko Yamamoto, Miranda Lyons-Cohen, Hideki Nakano, Kyathanahalli Janardhan, Carmen J. Williams, Donald N. Cook, Joseph P. Mizgerd, Michael B. Fessler

×

Abstract

Mutations in genes encoding components of the mitochondrial DNA (mtDNA) replication machinery cause mtDNA depletion syndromes (MDSs), which associate ocular features with severe neurological syndromes. Here, we identified heterozygous missense mutations in single-strand binding protein 1 (SSBP1) in 5 unrelated families, leading to the R38Q and R107Q amino acid changes in the mitochondrial single-stranded DNA-binding protein, a crucial protein involved in mtDNA replication. All affected individuals presented optic atrophy, associated with foveopathy in half of the cases. To uncover the structural features underlying SSBP1 mutations, we determined a revised SSBP1 crystal structure. Structural analysis suggested that both mutations affect dimer interactions and presumably distort the DNA-binding region. Using patient fibroblasts, we validated that the R38Q variant destabilizes SSBP1 dimer/tetramer formation, affects mtDNA replication, and induces mtDNA depletion. Our study showing that mutations in SSBP1 cause a form of dominant optic atrophy frequently accompanied with foveopathy brings insights into mtDNA maintenance disorders.

Authors

Camille Piro-Mégy, Emmanuelle Sarzi, Aleix Tarrés-Solé, Marie Péquignot, Fenna Hensen, Mélanie Quilès, Gaël Manes, Arka Chakraborty, Audrey Sénéchal, Béatrice Bocquet, Chantal Cazevieille, Agathe Roubertie, Agnès Müller, Majida Charif, David Goudenège, Guy Lenaers, Helmut Wilhelm, Ulrich Kellner, Nicole Weisschuh, Bernd Wissinger, Xavier Zanlonghi, Christian Hamel, Johannes N. Spelbrink, Maria Sola, Cécile Delettre

×

Abstract

Mosaic-variegated aneuploidy (MVA) syndrome is a rare childhood disorder characterized by biallelic BUBR1, CEP57, or TRIP13 aberrations; increased chromosome missegregation; and a broad spectrum of clinical features, including various cancers, congenital defects, and progeroid pathologies. To investigate the mechanisms underlying this disorder and its phenotypic heterogeneity, we mimicked the BUBR1L1012P mutation in mice (BubR1L1002P) and combined it with 2 other MVA variants, BUBR1X753 and BUBR1H, generating a truncated protein and low amounts of wild-type protein, respectively. Whereas BubR1X753/L1002P and BubR1H/X753 mice died prematurely, BubR1H/L1002P mice were viable and exhibited many MVA features, including cancer predisposition and various progeroid phenotypes, such as short lifespan, dwarfism, lipodystrophy, sarcopenia, and low cardiac stress tolerance. Strikingly, although these mice had a reduction in total BUBR1 and spectrum of MVA phenotypes similar to that of BubR1H/H mice, several progeroid pathologies were attenuated in severity, which in skeletal muscle coincided with reduced senescence-associated secretory phenotype complexity. Additionally, mice carrying monoallelic BubR1 mutations were prone to select MVA-related pathologies later in life, with predisposition to sarcopenia correlating with mTORC1 hyperactivity. Together, these data demonstrate that BUBR1 allelic effects beyond protein level and aneuploidy contribute to disease heterogeneity in both MVA patients and heterozygous carriers of MVA mutations.

Authors

Cynthia J. Sieben, Karthik B. Jeganathan, Grace G. Nelson, Ines Sturmlechner, Cheng Zhang, Willemijn H. van Deursen, Bjorn Bakker, Floris Foijer, Hu Li, Darren J. Baker, Jan M. van Deursen

×

Abstract

Mitochondrial dysfunction or loss is evident in neurodegenerative diseases. Furthermore, mitochondrial DNA (mtDNA) mutations associated with NADH dehydrogenase subunits and nuclear gene mutations that affect mitochondrial function result in optic neuropathies. In this issue of the JCI, Del Dotto et al. and Piro-Mégy et al. identify heterozygous mutations in nuclear-encoded mitochondrial single-strand binding protein 1 (SSBP1) in patients with apparently dominant optic neuropathy with or without extraocular phenotypes. Both research groups reported similar mitochondrial findings in response to SSBP1 mutations. However, the specific SSBP1 mitochondria–associated function in retinal ganglion cells (RGCs) and the resulting optic nerve remains unclear. We suggest that high expression of SSBP1 during RGC differentiation is critical for mtDNA maintenance to produce appropriate optic nerve connectivity and that SSBP1 mutations in dominant optic atrophy patients do not permit stable binding to N6-methyldeoxyadenosine on the heavy strand involved with replication, leading to disruptions of mtDNA and, eventually, optic nerve dysfunction.

Authors

Lina Zelinger, Anand Swaroop

×

Abstract

Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility–mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair, and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.

Authors

Andrew G. Masoud, Jiaxin Lin, Abul K. Azad, Maikel A. Farhan, Conrad Fischer, Lin F. Zhu, Hao Zhang, Banu Sis, Zamaneh Kassiri, Ronald B. Moore, Daniel Kim, Colin C. Anderson, John C. Vederas, Benjamin A. Adam, Gavin Y. Oudit, Allan G. Murray

×

Abstract

The mineralocorticoid aldosterone is produced in the adrenal zona glomerulosa (ZG) under the control of the renin–angiotensin II (AngII) system. Primary aldosteronism (PA) results from renin-independent production of aldosterone and is a common cause of hypertension. PA is caused by dysregulated localization of the enzyme aldosterone synthase (Cyp11b2), which is normally restricted to the ZG. Cyp11b2 transcription and aldosterone production are predominantly regulated by AngII activation of the Gq signaling pathway. Here, we report the generation of transgenic mice with Gq-coupled designer receptors exclusively activated by designer drugs (DREADDs) specifically in the adrenal cortex. We show that adrenal-wide ligand activation of Gq DREADD receptors triggered disorganization of adrenal functional zonation, with induction of Cyp11b2 in glucocorticoid-producing zona fasciculata cells. This result was consistent with increased renin-independent aldosterone production and hypertension. All parameters were reversible following termination of DREADD-mediated Gq signaling. These findings demonstrate that Gq signaling is sufficient for adrenocortical aldosterone production and implicate this pathway in the determination of zone-specific steroid production within the adrenal cortex. This transgenic mouse also provides an inducible and reversible model of hyperaldosteronism to investigate PA therapeutics and the mechanisms leading to the damaging effects of aldosterone on the cardiovascular system.

Authors

Matthew J. Taylor, Matthew R. Ullenbruch, Emily C. Frucci, Juilee Rege, Mark S. Ansorge, Celso E. Gomez-Sanchez, Salma Begum, Edward Laufer, David T. Breault, William E. Rainey

×

Abstract

Authors

Robert A. Brodsky, Michael R. DeBaun

×

Abstract

Gene therapy approaches are being deployed to treat recessive genetic disorders by restoring the expression of mutated genes. However, the feasibility of these approaches for dominantly inherited diseases — where treatment may require reduction in the expression of a toxic mutant protein resulting from a gain-of-function allele — is unclear. Here we show the efficacy of allele-specific RNAi as a potential therapy for Charcot-Marie-Tooth disease type 2D (CMT2D), caused by dominant mutations in glycyl-tRNA synthetase (GARS). A de novo mutation in GARS was identified in a patient with a severe peripheral neuropathy, and a mouse model precisely recreating the mutation was produced. These mice developed a neuropathy by 3–4 weeks of age, validating the pathogenicity of the mutation. RNAi sequences targeting mutant GARS mRNA, but not wild-type, were optimized and then packaged into AAV9 for in vivo delivery. This almost completely prevented the neuropathy in mice treated at birth. Delaying treatment until after disease onset showed modest benefit, though this effect decreased the longer treatment was delayed. These outcomes were reproduced in a second mouse model of CMT2D using a vector specifically targeting that allele. The effects were dose dependent, and persisted for at least 1 year. Our findings demonstrate the feasibility of AAV9-mediated allele-specific knockdown and provide proof of concept for gene therapy approaches for dominant neuromuscular diseases.

Authors

Kathryn H. Morelli, Laurie B. Griffin, Nettie K. Pyne, Lindsay M. Wallace, Allison M. Fowler, Stephanie N. Oprescu, Ryuichi Takase, Na Wei, Rebecca Meyer-Schuman, Dattatreya Mellacheruvu, Jacob O. Kitzman, Samuel G. Kocen, Timothy J. Hines, Emily L. Spaulding, James R. Lupski, Alexey Nesvizhskii, Pedro Mancias, Ian J. Butler, Xiang-Lei Yang, Ya-Ming Hou, Anthony Antonellis, Scott Q. Harper, Robert W. Burgess

×

Abstract

The microphthalmia family of transcription factors (MiT/TFEs) controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. However, the mechanisms by which cells with constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we found that epidermal Tsc1 deletion resulted in a phenotype characterized by wavy hair and curly whiskers, and was associated with increased EGFR and HER2 degradation. Unexpectedly, constitutive mTORC1 activation with Tsc1 loss increased lysosomal content via upregulated expression and activity of MiT/TFEs, whereas genetic deletion of Rheb or Rptor or prolonged pharmacologic mTORC1 inactivation had the reverse effect. This paradoxical increase in lysosomal biogenesis by mTORC1 was mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE downregulation. Thus, inhibiting hyperactive AKT signaling in the context of mTORC1 loss-of-function fully restored MiT/TFE expression and activity. These data suggest that signaling feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling, respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.

Authors

Kaushal Asrani, Sanjana Murali, Brandon Lam, Chan-Hyun Na, Pornima Phatak, Akshay Sood, Harsimar Kaur, Zoya Khan, Michaël Noë, Ravi K. Anchoori, C. Conover Talbot Jr., Barbara Smith, Michael Skaro, Tamara L. Lotan

×

Abstract

Catecholamines released by sympathetic nerves can activate adrenergic receptors present on nearly every cell type, including myeloid-derived suppressor cells (MDSCs). Using in vitro systems, murine tumor models in wild-type and genetically modified (β2-AR–/–) mice, and adoptive transfer approaches, we found that the degree of β2-AR signaling significantly influences MDSC frequency and survival in tumors and other tissues. It also modulates their expression of immunosuppressive molecules such as arginase-I and PD-L1 and alters their ability to suppress the proliferation of T cells. The regulatory functions of β2-AR signaling in MDSCs were also found to be dependent upon STAT3 phosphorylation. Moreover, we observed that the β2-AR–mediated increase in MDSC survival is dependent upon Fas-FasL interactions, and this is consistent with gene expression analyses, which reveal a greater expression of apoptosis-related genes in β2-AR–/– MDSCs. Our data reveal the potential of β2-AR signaling to increase the generation of MDSCs from both murine and human peripheral blood cells and that the immunosuppressive function of MDSCs can be mitigated by treatment with β-AR antagonists, or enhanced by β-AR agonists. This strongly supports the possibility that reducing stress-induced activation of β2-ARs could help to overcome immune suppression and enhance the efficacy of immunotherapy and other cancer therapies.

Authors

Hemn Mohammadpour, Cameron R. MacDonald, Guanxi Qiao, Minhui Chen, Bowen Dong, Bonnie L. Hylander, Philip L. McCarthy, Scott I. Abrams, Elizabeth A. Repasky

×

Abstract

Deep venous thrombosis (DVT) and secondary pulmonary embolism cause approximately 100,000 deaths per year in the United States. Physical immobility is the most significant risk factor for DVT, but a molecular and cellular basis for this link has not been defined. We found that the endothelial cells surrounding the venous valve, where DVTs originate, express high levels of FOXC2 and PROX1, transcription factors known to be activated by oscillatory shear stress. The perivalvular venous endothelial cells exhibited a powerful antithrombotic phenotype characterized by low levels of the prothrombotic proteins vWF, P-selectin, and ICAM1 and high levels of the antithrombotic proteins thrombomodulin (THBD), endothelial protein C receptor (EPCR), and tissue factor pathway inhibitor (TFPI). The perivalvular antithrombotic phenotype was lost following genetic deletion of FOXC2 or femoral artery ligation to reduce venous flow in mice, and at the site of origin of human DVT associated with fatal pulmonary embolism. Oscillatory blood flow was detected at perivalvular sites in human veins following muscular activity, but not in the immobile state or after activation of an intermittent compression device designed to prevent DVT. These findings support a mechanism of DVT pathogenesis in which loss of muscular activity results in loss of oscillatory shear–dependent transcriptional and antithrombotic phenotypes in perivalvular venous endothelial cells, and suggest that prevention of DVT and pulmonary embolism may be improved by mechanical devices specifically designed to restore perivalvular oscillatory flow.

Authors

John D. Welsh, Mark H. Hoofnagle, Sharika Bamezai, Michael Oxendine, Lillian Lim, Joshua D. Hall, Jisheng Yang, Susan Schultz, James Douglas Engel, Tsutomu Kume, Guillermo Oliver, Juan M. Jimenez, Mark L. Kahn

×

Abstract

microRNA-21 (miR-21) is the most commonly upregulated miRNA in solid tumors. This cancer-associated microRNA (oncomiR) regulates various downstream effectors associated with tumor pathogenesis during all stages of carcinogenesis. In this study, we analyzed the function of miR-21 in noncancer cells of the tumor microenvironment to further evaluate its contribution to tumor progression. We report that the expression of miR-21 in cells of the tumor immune infiltrate, and in particular in macrophages, was responsible for promoting tumor growth. Absence of miR-21 expression in tumor- associated macrophages (TAMs), caused a global rewiring of their transcriptional regulatory network that was skewed toward a proinflammatory angiostatic phenotype. This promoted an antitumoral immune response characterized by a macrophage-mediated improvement of cytotoxic T-cell responses through the induction of cytokines and chemokines, including IL-12 and C-X-C motif chemokine 10. These effects translated to a reduction in tumor neovascularization and an induction of tumor cell death that led to decreased tumor growth. Additionally, using the carrier peptide pH (low) insertion peptide, we were able to target miR-21 in TAMs, which decreased tumor growth even under conditions where miR-21 expression was deficient in cancer cells. Consequently, miR-21 inhibition in TAMs induced an angiostatic and immunostimulatory activation with potential therapeutic implications.

Authors

Mahnaz Sahraei, Balkrishna Chaube, Yuting Liu, Jonathan Sun, Alanna Kaplan, Nathan L. Price, Wen Ding, Stanley Oyaghire, Rolando García-Milian, Sameet Mehta, Yana K. Reshetnyak, Raman Bahal, Paolo Fiorina, Peter M. Glazer, David L. Rimm, Carlos Fernández-Hernando, Yajaira Suárez

×

Abstract

Tumor-induced immunosuppression is a common obstacle for cancer treatment. Adrenergic signaling triggered by chronic stress participates in the creation of an immunosuppressive microenvironment by promoting myeloid-derived suppressor cell (MDSC) proliferation and activation. In this issue of the JCI, Mohammadpour et al. elegantly delve into the mechanisms underlying MDSC contribution to tumor development. They used in vitro and in vivo mouse models to demonstrate that chronic stress results in MDSC accumulation, survival, and immune-inhibitory activity. Of therapeutic relevance, the authors showed that propranolol, a commonly prescribed β-blocker, can reduce MDSC immunosuppression and enhance the effect of other cancer therapies.

Authors

Ignacio Iñigo-Marco, Marta M. Alonso

×

In-Press Preview - More

Abstract

Immune response to therapeutic enzymes poses a detriment to patient safety and treatment outcome. Enzyme replacement therapy (ERT) is a standard therapeutic option for some types of Mucopolysaccharidoses including Morquio A syndrome caused by GALNS deficiency. Current protocols tolerize patients using cytotoxic immunosuppressives which can cause adverse effects. Here we show development of tolerance in Morquio A mice via oral delivery of peptide or GALNS during ten days prior to ERT. Our results show that using an immunodominant peptide (I10) or the complete enzyme (GALNS) to orally induce tolerance to GALNS prior to ERT, resulted in several improvements to ERT in mice: i) decreased splenocyte proliferation after in-vitro GALNS stimulation; ii) modulation of cytokine secretion profile; iii) decline in GALNS-specific IgG or IgE plasma; iv) decreased GAG storage in liver; and v) fewer circulating immune-complexes in plasma. This model could be extrapolated to other lysosomal storage disorders where immune response hinders ERT.

Authors

Angela C. Sosa, Barbara Kariuki, Qi Gan, Alan P. Knutsen, Clifford J. Bellone, Miguel A. Guzmán, Luis A. Barrera, Shunji Tomatsu, Anil K. Chauhan, Eric Armbrecht, Adriana M. Montaño

×

Abstract

A single sub-anesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates these and its behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrate that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst), or parvalbumin (Pvalb), but not glutamate principle neurons in the mPFC. Further analysis of GABA subtypes showed that cell specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.

Authors

Danielle M. Gerhard, Santosh Pothula, Rong-Jian Liu, Min Wu, Xiao-Yuan Li, Matthew J. Girgenti, Seth R. Taylor, Catharine H. Duman, Eric Delpire, Marina Picciotto, Eric S. Wohleb, Ronald S. Duman

×

Abstract

Background: Ceramides are sphingolipids that play causative roles in diabetes and heart disease, with their serum levels measured clinically as biomarkers of cardiovascular disease (CVD). Methods: We performed targeted lipidomics on serum samples of individuals with familial coronary artery disease (CAD) (n = 462) and population-based controls (n = 212) to explore the relationship between serum sphingolipids and CAD, employing unbiased machine learning to identify sphingolipid species positively associated with CAD. Results: Nearly every sphingolipid measured (n = 30 of 32) was significantly elevated in subjects with CAD compared with population controls. We generated a novel Sphingolipid Inclusive CAD risk score, termed SIC, that demarcates CAD patients independently and more effectively than conventional clinical CVD biomarkers including LDL-cholesterol and serum triglycerides. This new metric comprises several minor lipids which likely serve as measures of flux through the ceramide biosynthesis pathway, rather than the abundant deleterious ceramide species that are incorporated in other ceramide-based scores. Conclusion: This study validates serum ceramides as candidate biomarkers of cardiovascular disease and suggests that comprehensive sphingolipid panels be considered as measures of CVD.

Authors

Annelise M. Poss, J. Alan Maschek, James E. Cox, Benedikt J. Hauner, Paul N. Hopkins, Steven C. Hunt, William L. Holland, Scott A. Summers, Mary C. Playdon

×

Abstract

Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage, however, their role in autoimmunity is less clear. Herein we demonstrate that two C-type lectin receptors (CLRs), Mcl and Mincle, play an important role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS). Congenic rats expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 revealed that receptors expression in the central nervous system is crucial for the T cell recruitment and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered MCL/MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE stimulation in peripheral blood mononuclear cells from MS patients. Together these data support a role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic target in MS.

Authors

Marie N'diaye, Susanna Brauner, Sevasti Flytzani, Lara Kular, Andreas Warnecke, Milena Z. Adzemovic, Eliane Piket, Jin-Hong Min, Will Edwards, Filia Mela, Hoi Ying Choi, Vera Magg, Tojo James, Magdalena Linden, Holger M. Reichardt, Michael R. Daws, Jack van Horssen, Ingrid Kockum, Robert A. Harris, Tomas Olsson, Andre O. Guerreiro-Cacais, Maja Jagodic

×

Abstract

Neuronal hyperexcitability and cytoplasmic mislocalization of the nuclear RNA binding proteinTDP43 are universal features in amyotrophic lateral sclerosis (ALS), but the relationship between these phenomena remains poorly defined. Here, we show that neuronal hyperexcitability drives TDP43 pathology by upregulating shortened (s)TDP43 splice variants missing the canonical C-terminus. sTDP43 isoforms preferentially accumulate in the cytoplasm,forming insoluble inclusions that sequester full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression is highly toxic to mammalian neurons, suggesting that neurodegeneration results from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts are significantly enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 protein within neurons and glia of ALS patients. These studies uncover a hitherto unknown role of alternative TDP43 splice isoforms in ALS, and indicate that sTDP43 production may be a key contributor to the susceptibility of motor neurons in ALS.

Authors

Kaitlin Weskamp, Elizabeth M. Tank, Roberto Miguez, Jonathon P. McBride, Nicolás B. Gómez, Matthew White, Ziqiang Lin, Carmen Moreno Gonzalez, Andrea Serio, Jemeen Sreedharan, Sami J. Barmada

×

Advertisement

November 2019

November 2019 Issue

On the cover:
ANGPTL4 destabilizes the retinal vasculature in diabetic macular edema

Anti-VEGF therapy, the standard of care for patients with diabetic macular edema (DME), does not substantially improve vision in many treated patients. In this issue of the JCI, Sodhi et al. explore the role of another protein, ANGPTL4, in driving vascular leakage in DME. Their work revealed that ANGPTL4 and VEGF work in concert to destabilize the retina’s vasculature. ANGPTL4’s binding to neuropilin 1 and 2 on endothelial cells disrupts vascular barriers by activating RhoA/ROCK signaling. Treating diabetic mice with a soluble neuropilin 1 fragment blocked ANGPTL1-induced vascular leakage, supporting a potential therapeutic avenue for interfering in ANGPTL4-mediated mechanisms in DME. This issue’s cover depicts the pathological leakage of the retinal vasculature in a patient with diabetic eye disease. Image courtesy of Wilmer Photography; modified by Isabella and Adriana Sodhi.

×

November 2019 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mechanisms Underlying the Metabolic Syndrome

Series edited by Philipp E. Scherer

Obesity often occurs with a quintessential array of metabolic abnormalities: elevations in blood pressure, visceral fat, and circulating blood lipids, and, importantly, insulin resistance. Together, this constellation of conditions constitutes the metabolic syndrome and forecasts an individual’s increased risk of developing cardiovascular diseases and type 2 diabetes. Although metabolic syndrome presents as dysfunction across multiple tissues, its onset stems from pathological increases in adipose tissue. The 9 review in this series, conceptualized by series editor Philipp Scherer, delve into the complex biology underlying the metabolic syndrome. These reviews address adipocyte and beta cell dysfunction in the metabolic syndrome; the functions of adipose tissue fibrosis, the microbiome, and exosomal communication in obesity; and the concepts we use to define metabolic health.

×