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Figure S1. C57BL/6 mice develop obesity on HFD (related to Figure 1).

(A-B) Body weights of two cohorts of B6 male mice fed HFD vs LFD for 2 or 4 weeks (n=10 mice per
group). (C-D) Body weights and fat pad weights for two cohorts fed these diets for 12 weeks (Cohort 3
n=5 and cohort 4 n=15 mice per group). (E) The fifth cohort was fed LFD for 12 weeks, HFD for 12
weeks, or HFD for 10 weeks followed by HFD with rosi for the final 2 weeks (n=5 mice per group).

Serum leptin levels are shown here, and body weights and other measurements in this cohort are in
Figures 3 and S4. (* P<0.01, T-test)
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Figure S2. High fat diet decreases PPARy expression and genome-wide occupancy in visceral
fat of C57BL/6 mice (related to Figure 2). (A) Scatterplots of five independent PPARy ChlP-seq
experiments on three different mouse cohorts comparing occupancy in eWAT on HFD for 12 weeks

versus control LFD.

(#1-2 on cohort 4, #3 on cohort 3, #4-5 on cohort 5).

The slope of linear

regression (red) shows consistently less occupancy on HFD, while the dotted line shows slope of 1 or
equal occupancy. (B) Quantitative RT-PCR for Ppargl, Pparg2, and the macrophage marker Emr1,
normalized to the housekeeping control gene Rplp0/36B4, in B6 eWAT on HFD versus LFD for 4 or 12
weeks (* P<0.01, T-test). (C) anti-PPARy Western Blot in eWAT on HFD versus LFD for 12 weeks,

n=3 mice per diet from cohort 3.
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Figure S3. High fat diet alters PPARy occupancy and gene regulation in visceral fat of C57BL/6 mice
(related to Figure 2). (A) Heatmap showing HFD-up PPARYy sites consistent in 5 experiments (L=LFD, H=HFD),
and enriched for macrophage (mac) selective sites. Pathway analysis (right) shows enriched immune and
inflammatory processes. (B) Same for HFD-down PPARy sites, which were also reproducible yet showed
enrichment of adipocyte (ad) sites and adipocyte metabolic pathways. (C) Each PPARYy site was assigned to the
nearest TSS within 100kb, HFD-down and HFD-up sites both showed enrichment of similarly regulated nearest
genes (*, P<0.0001 Chi-square). (D) Genes were binned by their change on HFD and diet-regulated PPARYy sites
within +/- 100kb of the TSS were counted. The degree of gene HFD down-regulation correlated with the number
of nearby HFD-down sites (left), and likewise for HFD-up genes and sites (right). (*P<0.01 Mann-Whitney,
#P<0.05 Kruskal-Wallis) (E) Browser track examples of a locus (left, Atf3) with HFD-up PPARy occupancy in
eWAT, macrophage selective PPARYy sites (yellow), and HFD-up histone acetylation, and another locus (right,
Cesl cluster) with HFD-down PPARYy binding and histone acetylation at adipocyte-selective sites.
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Figure S4. Effect of rosiglitazone in HFD obese C57BL/6 mice (related to Figure 3).

(A) Rosiglitazone (rosi) increased serum adiponectin levels. (B) eWAT and iWAT fat pad weights
increased on HFD versus LFD, but rosi did not change them significantly. (C) PPARy gene expression
in B6 IWAT and eWAT on all three diets. (D) Scatterplot comparing the effect of HFD on each PPARy
site (down/blue or up/red dots based on Figure 2A) to the effect of the drug rosi. (E) Average profiles of
PPARYy binding at HFD-down and HFD-up sites identified in Figure 2A, showing the effects of LFD
versus HFD versus HFD with rosi. (* P<0.01, T-test).
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Figure S5. Effects of HFD and rosiglitazone in iWAT of C57BL/6 mice (related to Figure 3).

(A) HFD-down adipocyte PPARYy sites identified in eWAT (from Figure 2D) showed little change in average
profile in iIWAT on HFD. (B) Venn diagram showing HFD-down genes identified in eWAT (from Figure 1A)
showed little overlap with HFD-down genes in iWAT. (C) HFD-up macrophage PPARYy sites identified in
eWAT (from Figure 2C) showed a similar increase in average profile in iWAT on HFD. (D) Venn diagram
showing that HFD-up genes identified in eWAT (from Figure 1A) had good overlap with HFD-up genes in
IWAT, though the degree of regulation was more in eWAT. (E) Venn diagram showing that genes HFD-up
in iIWAT (from previous panel) were not the same genes that were rosi down-regulated in iIWAT (from
Figure 3D), and these genes reflect different biological pathways.
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Figure S6. 129S1/SvimJ mice respond less to HFD than C57BL/6J mice (related to Figure 4).

Two cohorts of 129 mice were fed HFD versus LFD for 12 weeks. (A) Body weights of cohort 1 (h=10 mice
per group). (B-C) Cohort 2 also included a HFD+rosi arm (n=5 mice per group). Serum leptin and
adiponectin levels and fat pad weight are here, while body weights and other measurements in this cohort are
in Figure 4. (D) PPARy gene expression in 129 iWAT and eWAT on all three diets. (E) Scatterplot of PPARY
ChIP-seq data from 129 eWAT on HFD versus LFD. The sites previously identified in B6 eWAT (Figure 2A)
as HFD-down (left, blue) and HFD-up (right, red) show no major effect of diet in 129 eWAT. (F) Venn
diagrams comparing the very few HFD-regulated genes in 129 eWAT (yellow) with the many HFD-down
(blue) and HFD-up (red) genes identified in B6 eWAT in Figure 1A.



Figure S7 Mouse Ucpl locus, 413 total SNPs in 39,691bp
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Figure S7. Imbalanced PPARy occupancy and mRNA expression of Ucpl in iWAT favoring 129 over B6,
but not other similarly regulated genes. (A) Genome browser view of ~40kb Ucpl locus showing all SNPs
differing between B6 and 129 mice. PPARy ChIP-seq shows more binding in 129 than B6 iWAT, but that
rosiglitazone does not change occupancy. (B) For each of the six PPARy binding regions, SNPs and
transcription factor motifs (PPAR, CEBP, NFI, and EBF) were identified, and only two SNPs fall in motifs
(starred). (C) Neither motif SNP shows a large allelic difference in consensus agreement, and both slightly favor
B6 - while binding favors 129. (D) In the left panel, genomic DNA from B6 and 129 mice was mixed at the
indicated ratios and subjected to pryrosequencing to measure allelic representation in each mixture. The
predicted and measured values showed a tight and linear correlation. In the right panel, F1 mouse genomic
DNA showed equal representation of the B6 and 129 alleles as expected, yet cDNA from iWAT favored the 129
alleles (* P<0.01, T-test). (E) 16 genes showed similar regulation to Ucpl and have exonic B6:129 SNPs to
measure imbalance in F1 iIWAT (see Table S3). Based on RNA-seq reads, none showed imbalanced
expression in F1 iWAT in the presence or absence of rosi (in contrast to Ucpl in Figure 7A-B).
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