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As a graduate student at the University of Pennsylvania many years ago, I read journals and wrote my thesis in the
Biochemistry Department’s library, the walls of which were adorned with photomicrographs of crystals of hemoglobin.
These elegant images were taken by David Drabkin, who is best known for the development of a colorimetric reagent
used to quantify hemoglobin in whole blood. He was, however, also an excellent physical biochemist, who first crystallized
human hemoglobin and explored its spectrophotometric properties and those of some of its derivatives (1). Among the
many derivatives and adducts of hemoglobin that gained increasing importance over the past 60 years is that of nitrosyl-
hemoglobin, which forms when deoxy-hemoglobin is exposed to nitric oxide (NO) (2). This interaction with heme iron is
one of many biochemical reactions in which NO is engaged and accounts for a plethora of functional effects in mammals
(Figure 1). One example includes the activation of guanylyl cyclase that occurs with the binding of NO to the enzyme’s
prosthetic heme group. Little did I realize at the time that an important part of my own research career would focus on this
deceptively simple heterodiatomic molecule and its pathobiological actions. NO and heme in prebiotic and biotic evolution
NO probably first appeared in the prebiotic phase of geochemical evolution approximately 4.5 to 2.5 […]
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As a graduate student at the University of 
Pennsylvania many years ago, I read jour-
nals and wrote my thesis in the Biochemis-
try Department’s library, the walls of which 
were adorned with photomicrographs of 
crystals of hemoglobin. These elegant 
images were taken by David Drabkin, who 
is best known for the development of a col-
orimetric reagent used to quantify hemo-
globin in whole blood. He was, however, 
also an excellent physical biochemist, who 
first crystallized human hemoglobin and 
explored its spectrophotometric proper-
ties and those of some of its derivatives (1). 
Among the many derivatives and adducts 
of hemoglobin that gained increasing 
importance over the past 60 years is that 
of nitrosyl-hemoglobin, which forms when 
deoxy-hemoglobin is exposed to nitric 
oxide (NO) (2). This interaction with heme 
iron is one of many biochemical reactions 
in which NO is engaged and accounts for a 
plethora of functional effects in mammals 
(Figure 1). One example includes the acti-
vation of guanylyl cyclase that occurs with 
the binding of NO to the enzyme’s prosthet-
ic heme group. Little did I realize at the time 
that an important part of my own research 
career would focus on this deceptively sim-
ple heterodiatomic molecule and its patho-
biological actions.

NO and heme in prebiotic and 
biotic evolution
NO probably first appeared in the prebiotic 
phase of geochemical evolution approx-
imately 4.5 to 2.5 billion years ago (Bya) 
from volcanic action and lightning dis-
charges in the Archean atmosphere. With 

the advent of the “great oxidation event” 
approximately 2.4 to 2.2 Bya, higher NO 
oxidation states evolved and, coupled 
with photochemical and free radical reac-
tions in a water vapor phase, created nitro-
gen-based acids that would have adverse 
effects on early biotic evolution (3). The 
prebiotic evolution of the highly chemi-
cally versatile porphyrins (4) set the stage 
for the generation of heme species, which 
likely served initially as a means to trap and 
thereby detoxify NO, limiting its adverse 
effects on early microbial evolution.

Effectors of vascular function
As a cardiology fellow, I became intrigued 
by the mechanism of action of organic 
nitrates commonly used to treat angina 
pectoris and acute coronary syndromes. 
In addition to cyclic GMP–dependent 
(cGMP-dependent) vascular smooth mus-
cle relaxation, organic nitrates appeared 
to inhibit platelet activation, albeit at con-
centrations that far exceed those achieved 
clinically. Yet, clinical data showed that 
nitroglycerin did, indeed, prolong bleed-
ing time. Needleman’s observations on the 
oxidative inactivation of organic nitrates 
accounting for tolerance and its preven-
tion by thiol species (5) led us to explore 
the effects of the thiol N-acetyl-l-cysteine 
(NAC) on the antiplatelet effects of organic 
nitrates (6). We found that thiol species dra-
matically enhanced platelet inhibition by 
organic nitrates and did so through the for-
mation of an S-nitrosothiol adduct of NAC, 
S-nitroso-N-acetyl-l-cysteine. Important-
ly, NO does not directly react with thiol or 
thiolate functionalities, but only does so as 

the nitrosonium species NO+ or via other 
nitrosating intermediates, such as acidified 
nitrite generated in the stomach or dini-
trosyl iron complexes (DNICs).

Work by Furchgott demonstrated that 
the endothelial cell generates a substance 
that is responsible for muscarinic agonist–
dependent smooth muscle relaxation, known 
initially as endothelium-derived relaxing 
factor or EDRF (7). By the late 1980s, EDRF 
was identified as NO by Ignarro (8) and inde-
pendently by Moncada (9), and its vasorelax-
ing properties were found by Murad to be a 
consequence of guanylyl cyclase activation 
(10) via binding to the enzyme’s prosthet-
ic heme group. For their work, Furchgott, 
Ignarro, and Murad won the Nobel Prize in 
Medicine or Physiology in 1998.

The identification of NO as EDRF set off 
a host of studies that attempted to explore its 
metabolism and biochemistry, its actions in 
health and disease, and its potential thera-
peutic effects. NO is synthesized by members 
of the NO synthase (NOS) family of oxidore-
ductases, each of which converts l-arginine 
to l-citrulline and NO. A key member of this 
family from the vascular perspective is the 
endothelial isoform eNOS, also known as 
NOS3, which is responsible for the highly reg-
ulated generation of endothelium-derived 
NO. The chemistry of NO is complex, owing 
to its multiple redox states and its differential 
reactivity toward different ROS. While NO is 
a free radical, it is far less reactive than oth-
er biologically relevant free radical species, 
allowing it to diffuse over greater distances to 
bring about its biological actions as it encoun-
ters other biochemical coreactants (11).

Apropos of the effects of thiols on 
nitrovasodilator activity, we first demon-
strated that NO can form S-nitrosothiols in 
vivo with both low-molecular-weight thi-
ols (e.g., glutathione) and proteins. In fact, 
S-nitros(yl)ation reactions are posttransla-
tional modifications of protein thiol func-
tionalities that form a reservoir prolonging 
the half-life of NO and in some cases alter-
ing protein function (12). S-Nitrosothiols 
can undergo trans-S-nitrosation reactions 
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cholesterolemia-induced endothelial dys-
function was found to impair vasodilation 
in forearm vessels (19). Complementarily, 
NO was found to decrease endothelial cell 
activation and adhesion molecule expres-
sion in response to inflammatory cyto-
kines critical for atherogenesis (20). Two 
experiments of nature also provide evi-
dence for the importance of NO in vascu-
lar homeostasis. First, in the rare disorder 
of lysinuric protein intolerance caused by a 
mutation in the dibasic amino acid trans-
porter SLC7A7, l-arginine and NO levels 
are substantially reduced and accompa-
nied by impaired coronary perfusion and 
a prothrombotic state, abnormalities that 
were reversed by the administration of 
exogenous l-arginine (21). Second, two 
children with a history of arterial throm-
bosis were found to have a deficiency of 
bioactive NO secondary to decreased plas-
ma glutathione peroxidase activity (22). 
Plasma glutathione peroxidase (GPx-3) 
is a key extracellular antioxidant enzyme 
that reduces hydrogen and lipid perox-
ides to water and lipid alcohols, respec-
tively. A deficiency of GPx-3 is associated 
with increased peroxynitrite formation, 
impaired NO bioactivity, and enhanced 
platelet-dependent thrombosis, as shown 
in a genetic murine model (23). In addi-
tion to these rare variants, more common 
genetic polymorphisms in the eNOS gene 
NOS3 and in the guanylyl cyclase isoform 
1A3 gene GUCY1A3 have been shown to 
convey an increased risk of atherothrom-
botic disease (24), while gain-of-function 
variants in NOS3 appear to be atheropro-
tective (25).

Future directions
The history of the vascular biology of NO 
is rich with links to prebiotic geochem-
istry, early vascular therapeutics, and 
complex redox biochemistry. While the 
field has continued to advance over the 
past four decades, there remain many 
opportunities for further developments in 
redox biology, with a clearer understand-
ing of the predictive determinants of 
NO’s reactivity toward other free radicals 
and radical anions and their downstream 
reactions; in therapeutics, with targeted 
delivery to specific tissues, or with agents 
that can enhance endogenous NO pro-
duction by NO synthases; in genomics, 
with increased precision in identifying 

rived NO limits recruitment of platelets to 
the growing platelet thrombus, constrain-
ing platelet-dependent hemostasis (16). 
NO-generating vasodilators also impair vas-
cular smooth muscle cell proliferation (17), 
an observation that served as the basis for 
an NO-therapeutic strategy to limit vascular 
smooth muscle cell proliferation following 
vascular injury with de-endothelialization 
such as with angioplasty (18).

NO in vascular pathobiology 
and disease
NO insufficiency as a manifestation of 
endothelial dysfunction is a key determi-
nant of many vascular pathobiologies. A 
decrease in bioactive NO caused by hyper-

to facilitate transfer to specific acceptors 
(13); a key mechanism for transcellular 
trans-S-nitrosation involves transport into 
the intracellular environment via catalysis 
by protein disulfide isomerase (14).

Once endothelium-derived NO has 
gained access to its effector cell (e.g., the 
vascular smooth muscle cell or platelet), 
it binds to guanylyl cyclase’s prosthetic 
heme group to activate the enzyme, gen-
erate cGMP, and lead to cGMP-depen-
dent smooth muscle relaxation or platelet 
inhibition, respectively. NO also plays a 
key signaling role downstream of VEGF in 
promoting angiogenesis (15). In addition 
to the direct antiplatelet effects of endoge-
nous endothelium–derived NO, platelet-de-

Figure 1. Biochemical reactions involving NO contribute to metabolic outcomes in the vasculature. 
The interaction between reactive NO and heme iron or other interactants provide molecular sources 
for many biochemical processes and functional effects in mammals. One example includes the acti-
vation of guanylyl cyclase by the nitrosyl-heme prosthetic group, resulting in vasodilation. Notably, 
nitroglycerin yields NO, which results in vasodilation. DNICs, generated within cells, may also act as 
nitrosating intermediates with involvement in vascular signaling. In combination with superoxide, NO 
forms peroxynitrite, which may serve as an oxidizing substrate. Other effectors of vascular function 
include nitrite and nitrate, which affect vasodilation, platelet function, and angiogenesis. Low-mo-
lecular-weight S-nitrosothiols, via NO+, also provide a source for protein modifications that promote 
effects such as vasodilation and platelet inhibition. RSH, sulfhydryl species.
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genomic determinants of NO generation 
or inactivation; in metagenomics, with 
a clearer understanding of the gut, oral, 
and dermal microbiome and its role(s) in 
modulating endogenous NOx pools; and 
in diagnostics, with expired gas, plasma, 
or other bodily fluid patterns of NOx spe-
cies and their association with disease 
or treatment. The future of vascular NO 
research will be complex, to be sure, but 
promises to offer an increasingly detailed 
view of the biological elegance of this 
remarkable molecule.
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